Stats Master VCL
|
Constructs the Normal Probability Chart.
Parameters |
Description |
Data |
Data to be drawn. The assumption is data values are sorted. |
XDrawVec |
Returns normal probability plot horizontal values to be drawn - > estimated quantiles from Data vector or in this case sorted Data values. |
YDrawVec |
Returns normal probability plot vertical values to be drawn - > Values are generated from theoretical standard normal distribution with parameters mu=0, sigma^2=1. |
MinX |
Returns slope line start X point, XDrawVec 25th percentile. These value are used by Dew.Stats.Tee.ProbabilityPlot series. |
MaxX |
Returns slope line end X point, XDrawVec 75th percentile. These value are used by Dew.Stats.Tee.ProbabilityPlot series. |
MinY |
Returns slope line start Y point, YDrawVec 25th percentile. These value are used by Dew.Stats.Tee.ProbabilityPlot series. |
MaxY |
Returns slope line end Y point, YDrawVec 75th percentile. These value are used by Dew.Stats.Tee.ProbabilityPlot series. |
StdErrs |
Standard error |
DataSorted |
If true, algorithm assumes Data is already sorted in ascending order. If Data is not sorted, you must set this parameter to false so that internal algorithm will automatically do the sorting. |
How to construct Normal distribution probability plot?
The normal probability plot is used to answer the following questions:
Dew.Stats.Tee.ProbabilityPlot
The following code will create probability plot and then plot calculated values.
Uses MtxExpr, StatProbPlots, StatSeries, Math387, MtxVecTee; procedure Example(Series1: TStatProbSeries); var Data, XVec, YVec: Vector; X1,Y1,X2,Y2: double; begin // generate some random values for Data vec Data.Size(100); Data.RandGauss(0.0,1.0); // standard norm. dist. StatNormalPlot(Data,XVec,YVec,X1,X2,Y1,Y2,false); With Series1 do begin MinX := X1; MinY := Y1; MaxX := X2; MaxY := Y2; end; DrawValues(XVec,YVec,Series1); end;
#include "Math387.hpp" #include "MtxExpr.hpp" #include "StatProbPlots.hpp" #include "StatSeries.hpp" #include "MtxVecTee.hpp" void __fastcall Example(TStatProbSeries * Series1); { sVector data,xvec,yvec; double x1,x2,y1,y2; data.Size(100,false); data.RandGauss(0.0,1.0); // standard distribution StatNormalPlot(data,xvec,yvec,x1,x2,y1,y2,false); Series1->MinX = x1; Series1->MaxX = x2; Series1->MinY = y1; Series1->MaxY = y2; DrawValues(xvec,yvec,Series1); }
Copyright (c) 1999-2025 by Dew Research. All rights reserved.
|
What do you think about this topic? Send feedback!
|