You are here: Symbol Reference > Dew Namespace > Dew.Math Namespace > Classes > Matrix Structure > Matrix Methods > EigGen Method > Matrix.EigGen Method (TMtx, TVec, TVec, TBalanceType, TEigBalancing, TVec, TVec, TMtx, TMtx)
Dew Math for .NET
ContentsIndexHome
PreviousUpNext
Matrix.EigGen Method (TMtx, TVec, TVec, TBalanceType, TEigBalancing, TVec, TVec, TMtx, TMtx)

Computes generalized eigenvalues and eigenvectors of a non-symmetric matrix.

Syntax
C#
Visual Basic
public void EigGen(TMtx B, TVec DAlpha, TVec DBeta, TBalanceType Balance, TEigBalancing BInfo, TVec rconde, TVec rcondv, TMtx VL, TMtx VR);

Computes for a pair of N-by-N real nonsymmetric matrices (A = Self,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors (VL and/or VR). 

A generalized eigenvalue for a pair of matrices (A,B) is a scalar lambda or a ratio alpha/beta := lambda, such that A - lambda*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta = 0, and even for both being zero. 

The right eigenvector v(j) corresponding to the eigenvalue lambda(j) of (A,B) satisfies: 

 

A * v(j) = lambda(j) * B * v(j).

 

The left eigenvector u(j) corresponding to the eigenvalue lambda(j) of (A,B) satisfies: 

 

u(j)**H * A = lambda(j) * u(j)**H * B .

 

where u(j)**H is the conjugate-transpose of u(j). The individual eigevalues can be computed as: 

 

lambda(j) = dAlpha(j)/dBeta(j);

 

Optionally also computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors , reciprocal condition numbers for the eigenvalues (rconde), and reciprocal condition numbers for the right eigenvectors (rcondv).

Copyright (c) 1999-2024 by Dew Research. All rights reserved.
What do you think about this topic? Send feedback!