The Shapiro-Francia test for normality of data.
function ShapiroFrancia(const Data: TVec; out hRes: THypothesisResult; out Signif: double; hType: THypothesisType = htTwoTailed; Alpha: double = 0.05): double;
Parameters |
Description |
Data |
Data vector, containing ordered and unique deviates from unknown distribution. |
hRes |
Returns the result of the null hypothesis (default assumption is that data comes from normal distribution). |
Signif |
(Significance level) returns the probability of observing the given result by chance given that the null hypothesis is true. |
hType |
Defines the type of the null hypothesis (left, right and two - tailed). |
Alpha |
Defines the desired significance level. If the significance probability (Signif) is bellow the desired significance (Alpha), the null hypothesis is rejected. |
the Shapiro-Francia statistics.
Performs the The Shapiro-Francia test for normality of data.
Basic assumption is Data values i.e. deviates from unknown distribution are ordered and unique.ΕΎ
In this example we'll use Shapiro-Francia test to determine if data is coming from normal distribution.
Uses MtxExpr, Math387, Statistics; procedure Example; var avec,bvec: Vector; hres: THypothesisResult; Signif: double; begin avec.Size(1000,false); RandomWeibull(2.5,1,avec); // filter original data, retain only sorted unique values Unique(avec,bvec); ShapiroFrancia(bvec,hres,signif); // Significance approx. 0 // hres = hrReject -> data is not coming from normal distribution end;
#include "MtxExpr.hpp" #include "Math387.hpp" #include "Statistics.hpp" void __fastcall Example() { sVector a,b; a.Size(1000,false); RandomWeibull(2.5,1.0,a); // filter original data, retain only sorted unique values Unique(a,b, NULL); THypothesisResult hres; double sign; ShapiroFrancia(b,hres, sign,htTwoTailed,0.05); // Significance approx. 0 // hres = hrReject -> data is not coming from normal distribution }
Copyright (c) 1999-2025 by Dew Research. All rights reserved.
|
What do you think about this topic? Send feedback!
|