Cumulative histogram.
Divide the Data vector elements into intervals, specified by the Bins vector. The Bins elements define the center points for the individual intervals. The Bins elements must be sorted in ascending order. The number of elements falling in each interval is counted and the relative cumulative frequency for each interval is written to the Results vector. The Length and Complex properties of the Results vector are adjusted automatically.
Use this version if you need non-equidistant histogram.
Unequal bins -> slower that equidistant bins algorithm.
Uses MtxExpr, Statistics; procedure Example; var Data, Bins,CumRelFreq: Vector; begin Data.SetIt(false,[1,2,3,4,5,6,7,8,9,10]); Bins.Size(4); // define 4 intervals - centerpoints // define centerpoints, note that values are sorted! Bins.SetIt([1.5, 2, 6, 9]); CumulativeHist(Data,Bins, CumRelFreq); // Freq holds the relative cumulative count of // elements in each bin. end;
#include "MtxExpr.hpp" #include "Statistics.hpp" void __fastcall Example() { sVector Data, Bins, CumRelFreq; Data.SetIt(false,OPENARRAY(double,(1,2,3,4,5,6,7,8,9,10))); // define centerpoints, note that values are sorted! Bins.SetIt(false, OPENARRAY(double,(1.5, 2, 6, 9))); CumulativeHist(Data,Bins, CumRelFreq); // CumRelFreq holds the relative cumulative count of // elements in each bin. }
Copyright (c) 1999-2025 by Dew Research. All rights reserved.
|
What do you think about this topic? Send feedback!
|