You are here: Symbol Reference > StatTimeSerAnalysis Namespace > Functions > StatTimeSerAnalysis.ARIMASimulate Function
Stats Master VCL
ContentsIndex
PreviousUpNext
StatTimeSerAnalysis.ARIMASimulate Function

Simulate the ARIMA process.

Pascal
procedure ARIMASimulate(const p: TVec; const t: TVec; const d: Integer; const ResInit: TVec; const n: integer; const aResult: TVec);
Parameters 
Description 
stores the AR coefficients. Length of the p vector defines AR(p) order. 
stores the MA coefficients. Length of the t vector defines MA(q) order. 
defines how many times time series is differentiated (d parameter in ARIMA). 
ResInit 
defines initial values for integration: r[-d+1],Dr[-d+2],...,D^(d-1)r[0]. The length of ResInit must be equal to d, otherwise an exception will be raised. 
defines number of points to simulate. 
aResult 
returns ARIMA (p,d,q) time series. Size of Result vector is adjusted automatiacally. 

Simulate the ARIMA (p,d,q) process.

Simulate ARIMA(1,2,1) process with Phi=[1.0], Theta=[-0.25], d=2.

Uses MtxExpr, StatTimeSerAnalysis, Math387;
procedure Example;
var phi,theta,init,ts: Vector;
begin
  phi.SetIt(false,[1.0]);
  theta.SetIt(false,[-0.25]);
  init.SetIt(false,[0,0]);
  ARIMASimulate(phi,theta,2,init,100,ts);
  // ts now stores 100 points from ARIMA(1,1,2) process.
end;
#include "MtxExpr.hpp"
#include "Math387.hpp"
#include "StatTimeSerAnalysis.hpp"
void __fastcall Example();
{
  sVector phi,theta,init,ts;
  phi.SetIt(false,OPENARRAY(double,(1.0)));
  theta.SetIt(false,OPENARRAY(double,(-0.25)));
  init.SetIt(false,OPENARRAY(double,(0,0)));
  ARIMASimulate(phi,theta,2,init,100,ts);
  // ts now stores 100 points from ARIMA(1,1,2) process.
}
Examples on GitHub
Copyright (c) 1999-2025 by Dew Research. All rights reserved.
What do you think about this topic? Send feedback!