Stats Master VCL
|
Forecast time series by ARAR.
Parameters |
Description |
Data |
Defines original time series. |
Phi |
Defines ARAR model Phi coefficients (phi[0],phi[1],phi[2],phi[3]). |
Filter |
Defines memory shortening filter, obtained from memory-shortening operation. In case no memory-shortening is performed, set filter to 1.0 by using Filter.SetIt([1.0]). |
tau |
Defines memory-shortening optimal lag, obtained from memory-shortening operation. In case no memory-shortening is performed, set it to 1. |
l1 |
Defines optimal lag for phi[l1] (see equation above). |
l2 |
Defines optimal lag for phi[l2] (see equation above). |
l3 |
Defines optimal lag for phi[l3] (see equation above). |
SMean |
Defines memory-shortened series mean. |
N |
Defines number of forecasts. |
aResult |
Returns forecasts. Size and complex properties of Result are adjusted automatically. |
StdErrs |
Returns forecasts standard errors. Size and complex properties of StdErrs are adjusted automatically. |
RMSE |
Returns fit root mean square error (RMSE). |
Forecast time series values by using ARAR model, defined by the following relation:
Fit and then forecast time series values by using ARAR algorithm. Before applying the ARAR algorithm, use the shortening filter on original series.
Uses MtxExpr, StatTimeSerAnalysis, Math387; procedure Example; var timeseries,s,filter,phi: Vector; forecasts,stderrs: Vector; l1,l2,l3,tau: Integer; s2,rmse: double; begin timeseries.LoadFromFile('deaths.vec'); // #1: shorten series ShortenFilter(timeSeries,s,tau,Filter); // #2 : fit ARAR model on shortened series ARARFit(s,Phi,l1,l2,l3,s2,13); // #3: forecast 100 values by using ARAR fit parameters ARARForecast(timeseries,Phi,Filter,tau,l1,l2,l3,s.mean,100,forecasts,stderrs,rmse); end;
#include "MtxExpr.hpp" #include "StatTimeSerAnalysis.hpp" void __fastcall Example(); { sVector timeseries,s,filter,phi,forecasts,stderrs; int l1,l2,l3,tau; double s2, rmse; timeseries.LoadFromFile("deaths.vec"); // #1: shorten series ShortenFilter(timeseries,s,tau,filter); // #2 : fit ARAR model on shortened series ARARFit(s,phi,l1,l2,l3,s2,13); // #3: forecast 100 values by using ARAR fit parameters ARARForecast(timeseries,phi,filter,tau,l1,l2,l3,s->Mean(),100,forecasts,stderrs,rmse); }
Copyright (c) 1999-2025 by Dew Research. All rights reserved.
|
What do you think about this topic? Send feedback!
|