Regression tests.
Parameters |
Description |
Y |
Dependant variables. |
YCalc |
Estimated (calculated) dependant variables. |
ATA |
Inverse matrix of normal equations i.e [A(T)*A]^-1. |
RegStat |
Returns regression statistics parameters. |
Residuals |
Returns residual errors. |
BStdDev |
Returns standard deviation. |
Constant |
If true then include intercept term b(0) in calculations. If false, set intercept term b(0) to 0.0. |
Weights |
Model weights (optional). |
Using regression results the routine calculates additional regression statistical parameters, together with model coefficients standard errors and model errors.
Perform MLR and use results to calculate additional statistical parameters.
Uses Regress, MtxExpr; procedure Example; var y,b,w,yhat, resid, bstd: Vector; A, ATA : Matrix; RegStat : TRegStats; begin A.SetIt(4,2,false,[1.0, 2.0, -3.2, 2.5, 8.0, -0.5, -2.2, 1.8]); // independent variables w.SetIt(false,[1,2,2,1]); // weights y.SetIt(false,[-3.0, 0.25, 8.0, 5.5]); // dependent variables MulLinRegress(y,A,b,w,true,yhat,ATA); //do regression // b=(19.093757944, -2.0141843616, -10.082487055) RegressTest(y,yhat,ATA,RegStat,resid, bstd, true,w); // do basic regression stats // RegStat = (ResidualVar:0.037230395108; R2:0.99965713428; // AdjustedR2:0.99897140285; F:1457.7968725; SignifProb: 0.01851663347) end;
#include "MtxExpr.hpp" #include "Regress.hpp" void _fastcall Example() { sMatrix A,ATA; sVector y,b,w,yhat,res,bse; TRegStats rs; // independent variables A.SetIt(4,2,false,OPENARRAY(double,(1.0, 2.0, -3.2, 2.5, 8.0, -0.5, -2.2, 1.8))); w.SetIt(false,OPENARRAY(double,(1,2,2,1))); // weights y.SetIt(false,OPENARRAY(double,(-3.0, 0.25, 8.0, 5.5))); // dependent variables MulLinRegress(y,A,b,w,true,yhat,ATA); //do regression // b=(19.093757944, -2.0141843616, -10.082487055) RegressTest(y,yhat,ATA, rs,res,bse,true,w); // do basic regression stats // RegStat = (ResidualVar:0.037230395108; R2:0.99965713428; // AdjustedR2:0.99897140285; F:1457.7968725; SignifProb: 0.01851663347) }
Copyright (c) 1999-2025 by Dew Research. All rights reserved.
|
What do you think about this topic? Send feedback!
|