General non-linear regression.
function NLinRegress(const X: TVec; const Y: TVec; RegFun: TRegressFun; DeriveProc: TDeriveProc; const B: TVec; Method: TOptMethod; out StopReason: TOptStopReason; const Weights: TVec = nil; const YCalc: TVec = nil; SoftSearch: boolean = false; MaxIter: Integer = 500; Tol: double = 0.00000001; GradTol: double = 0.00000001; const Verbose: TStrings = nil): Integer; overload;
Parameters |
Description |
X |
Vector of the independent variable. |
Y |
Vector of dependent variable. |
RegFun |
Regression function. |
DeriveProc |
Procedure to calculate the derivatives of RegFun. You can define the exact derivative or use NumericDerive routine as numerical approximation. |
B |
Holds initial estimate for regression parameters. After the call to NLinRegress b returns calculated regression parameters. |
Method |
Defines which optimization method will be used to find regression parameters (see MtxVec.hlp TOptMethod type to learn more about this). |
StopReason |
Returns why regression parameters search stopped (see MtxVec.hlp TOptStopReason type to learn more about different stop reasons). |
Weights |
Weights (optional). |
YCalc |
Returns calculated values (optional). |
SoftSearch |
If true, internal line search algoritm will use soft line search method. Set this parameter to true if you're using numerical approximation for derivative. If this parameter is set to false, internal line search algorithm will use exact line search method. Set this parameter to false if you're using *exact* derivative. |
MaxIter |
Maximum allowed numer of allowed iterations. |
Tol |
Desired regression parameters tolerance. |
GradTol |
Minimum allowed gradient C-Norm. |
Verbose |
If assigned, stores Fun, evaluated at each iteration step. Optionally, you can also pass TOptControl object to the Verbose parameter. This allows the optimization procedure to be interrupted from another thread and optionally also allows logging and iteration count monitoring. |
Number of iterations needed to calculate regression parameters with specified tolerance.
The routine fits equations to data by minimizing the sum of squared residuals :
SS = Sum [y(k) - ycalc(k)]^2 ,
where y(k) and ycalc(k) are respectively the observed and calculated value of the dependent variable for observation k. ycalc(k) is a function of the regression parameters b(0), b(1) ... Here the observed values obey the following (non-linear) equation:
y(k) = RegFun[x(k), b(0), b(1), ... ]
Y = RegFun[X,b(0),b(1), ...]
where RegFun is the regression function and b(0),..b(i) are the regression parameters.
The following example uses data from NIST study involving circular interference transmittance. The response variable is transmittance, and the predictor variable is wavelength. First we setup the regression function Eckerle4 with three regression parameters (b0,b1,b2). Then we setup data and specify initial estimate for regression parameters (see below):
Uses MtxExp, Math387, Regress, Optimization, MtxVecTee; // function definition function Eckerle4(const B: TVec; X: double): double; begin Eckerle4 := B[0]/B[1] * Exp(-0.5*Sqr((X-B[2])/B[1])); end; procedure Example; var x,y,b,yhat: Vector; StopReason: TOptStopReason; begin x.SetIt(false,[400.0, 405.0, 410.0, 415.0, 420.0, 425.0, 430.0, 435.0, 436.5, 438.0, 439.5, 441.0, 442.5, 444.0, 445.5, 447.0, 448.5, 450.0, 451.5, 453.0, 454.5, 456.0, 457.5, 459.0, 460.5, 462.0, 463.5, 465.0, 470.0, 475.0, 480.0, 485.0, 490.0, 495.0, 500.0]); y.SetIt(false,[0.0001575, 0.0001699, 0.0002350, 0.0003102, 0.0004917, 0.0008710, 0.0017418, 0.0046400, 0.0065895, 0.0097302, 0.0149002, 0.0237310, 0.0401683, 0.0712559, 0.1264458, 0.2073413, 0.2902366, 0.3445623, 0.3698049, 0.3668534, 0.3106727, 0.2078154, 0.1164354, 0.0616764, 0.0337200, 0.0194023, 0.0117831, 0.0074357, 0.0022732, 0.0008800, 0.0004579, 0.0002345, 0.0001586, 0.0001143, 0.0000710]); b.SetIt(false,[1.0, 10.0, 500.0]); // initial estimates NLinRegress(x,y,Eckerle4,nil,b,optMarquardt, StopReason, nil,yhat,false,300,1e-8,1e-10); DrawValues(x,y,Series1,false); // draw data DrawValues(x,yhat,Series2,false); // draw fitted values end;
#include "MtxExpr.hpp" #include "Regress.hpp" #include "MtxVecTee.hpp" //add TChart to the form double __fastcall Eckerle4(TVec * const B, double x) { double a = (x - B->Values[2])/B->Values[1]; return B->Values[0]/B->Values[1] * Exp(-0.5*a*a); } void __fastcall Test(TLineSeries* series1, TLineSeries* series2) { sVector x,y,b,yhat; TOptStopReason StopReason; const int xLen = 35; double xData[xLen] = {400.0, 405.0, 410.0, 415.0, 420.0, 425.0, 430.0, 435.0, 436.5, 438.0, 439.5, 441.0, 442.5, 444.0, 445.5, 447.0, 448.5, 450.0, 451.5, 453.0, 454.5, 456.0, 457.5, 459.0, 460.5, 462.0, 463.5, 465.0, 470.0, 475.0, 480.0, 485.0, 490.0, 495.0, 500.0}; x.SetIt(false, xData, xLen-1); const int yLen = 35; double yData[yLen] = {0.0001575, 0.0001699, 0.0002350, 0.0003102, 0.0004917, 0.0008710, 0.0017418, 0.0046400, 0.0065895, 0.0097302, 0.0149002, 0.0237310, 0.0401683, 0.0712559, 0.1264458, 0.2073413, 0.2902366, 0.3445623, 0.3698049, 0.3668534, 0.3106727, 0.2078154, 0.1164354, 0.0616764, 0.0337200, 0.0194023, 0.0117831, 0.0074357, 0.0022732, 0.0008800, 0.0004579, 0.0002345, 0.0001586, 0.0001143, 0.0000710}; y.SetIt(false, yData, yLen-1); b.SetIt(false,OPENARRAY(double,(1.0, 10.0, 500.0))); // initial estimates NLinRegress(x,y,Eckerle4,NULL,b,optMarquardt, StopReason, NULL,yhat,false,300,1e-8,1e-10); DrawValues(x,y,series1,false); // draw data DrawValues(x,yhat,series2,false); // draw fitted values }
Copyright (c) 1999-2025 by Dew Research. All rights reserved.
|
What do you think about this topic? Send feedback!
|