You are here: Symbol Reference > SpecialFuncs Namespace
MtxVec VCL
ContentsIndex
PreviousUpNext
SpecialFuncs Namespace

Special math functions

Introduces several special functions:

  • Airy, Bessel functions,
  • Elliptic integrals,
  • Jacoby elliptic functions,
  • Associated Legendre polynomials.
Name 
Description 
The following table lists functions in this documentation. 
 
Name 
Description 
 
Airy 
Airy function of the first kind (Complex argument). 
 
Airy 
Airy function of the first kind or it's derivative (Complex argument, allows derivative or scale. 
 
Airy 
This is function SpecialFuncs.Airy. 
 
Airy 
This is function SpecialFuncs.Airy. 
 
Airy 
Airy function of the first kind (Real argument). 
 
Airy 
Airy function or it's derivative of the first kind (Real argument, allows derivative and scale). 
 
Airy 
This is function SpecialFuncs.Airy. 
 
Airy 
This is function SpecialFuncs.Airy. 
 
Besh 
Modified Bessel function of the third kind - Hankel function H(Z) (Complex argument). 
 
Besh 
Hankel function H(z) of the first or second kind (Complex argument, first or second kind, can be scaled. 
 
Besh 
Modified Bessel function of the third kind - Hankel function H(Z) (Real argument). 
 
Besh 
Hankel function H(z) of the first or second kind (Real argument, first or second kind, can be scaled. 
 
Besh 
This is function SpecialFuncs.Besh. 
 
Besh 
This is function SpecialFuncs.Besh. 
 
Besh 
This is function SpecialFuncs.Besh. 
 
Besh 
This is function SpecialFuncs.Besh. 
 
Besi 
Modified Bessel function of the first kind In(Z) (complex argument). 
 
Besi 
Modified Bessel function of the first kind In(Z) (Complex argument, can be scaled). 
 
Besi 
Modified Bessel function of the first kind In(A) (real argument). 
 
Besi 
Modified Bessel function of the first kind In(A) (Real argument, can be scaled). 
 
Besi 
This is function SpecialFuncs.Besi. 
 
Besi 
This is function SpecialFuncs.Besi. 
 
Besi 
This is function SpecialFuncs.Besi. 
 
Besi 
This is function SpecialFuncs.Besi. 
 
Besj 
Bessel function of the first kind Jn(Z) (Complex argument). 
 
Besj 
Bessel function of the first kind Jn(Z) (Complex argument, can be scaled). 
 
Besj 
Bessel function of the first kind Jn(Z) (Real argument). 
 
Besj 
Bessel function of the first kind Jn(A) (Real argument, can be scaled). 
 
Besj 
This is function SpecialFuncs.Besj. 
 
Besj 
This is function SpecialFuncs.Besj. 
 
Besj 
This is function SpecialFuncs.Besj. 
 
Besj 
This is function SpecialFuncs.Besj. 
 
Besk 
Modified Bessel function of the second kind Kn(Z) (complex argument). 
 
Besk 
Bessel function of the second kind Kn(Z) (Complex argument, can be scaled). 
 
Besk 
Modified Bessel function of the second kind Kn(A) (real argument). 
 
Besk 
Bessel function of the second kind Kn(A) (Real argument, can be scaled). 
 
Besk 
This is function SpecialFuncs.Besk. 
 
Besk 
This is function SpecialFuncs.Besk. 
 
Besk 
This is function SpecialFuncs.Besk. 
 
Besk 
This is function SpecialFuncs.Besk. 
 
Besy 
Bessel function of the second kind Yn(Z) (Complex argument). 
 
Besy 
Bessel function of the second kind Yn(Z) (Complex argument, can be scaled). 
 
Besy 
Bessel function of the second kind Yn(Z) (Real argument). 
 
Besy 
Bessel function of the second kind Yn(A) (Real argument, can be scaled). 
 
Besy 
This is function SpecialFuncs.Besy. 
 
Besy 
This is function SpecialFuncs.Besy. 
 
Besy 
This is function SpecialFuncs.Besy. 
 
Besy 
This is function SpecialFuncs.Besy. 
 
Biry 
Airy function of the second kind (Complex argument). 
 
Biry 
Airy function of the second kind or it's derivative (Complex argument, allows derivative or scale. 
 
Biry 
This is function SpecialFuncs.Biry. 
 
Biry 
This is function SpecialFuncs.Biry. 
 
Biry 
Airy function of the second kind (Real argument). 
 
Biry 
Airy function or it's derivative of the second kind (Real argument, allows derivative and scale). 
 
Biry 
This is function SpecialFuncs.Biry. 
 
Biry 
This is function SpecialFuncs.Biry. 
 
Complete elliptic integral. 
 
Complete elliptic integral, additional options. 
 
This is function SpecialFuncs.EllipComplete. 
 
This is function SpecialFuncs.EllipComplete. 
 
Jacoby elliptic functions. 
 
This is function SpecialFuncs.EllipJacoby. 
 
Associated Legendre polynomial P(l,m,x)
 
This is function SpecialFuncs.LegendreP. 
 
The associated Legendre polynomial P(l,0,x), (m = 0)
 
The associated Legendre polynomials for l= 0.. n, P(l,0,x)
 
This is function SpecialFuncs.LegendreP. 
 
This is function SpecialFuncs.LegendreP. 
Copyright (c) 1999-2025 by Dew Research. All rights reserved.
What do you think about this topic? Send feedback!