You are here: Symbol Reference > Optimization Namespace > Functions > Optimization.Simplex Function
MtxVec VCL
ContentsIndex
PreviousUpNext
Optimization.Simplex Function

Minimizes the function of several variables by using the Nelder-Mead (Simplex) optimization method.

Pascal
function Simplex(Func: TRealFunction; var Pars: Array of double; Const Consts: array of double; Const ObjConst: Array of TObject; out FMin: double; out StopReason: TOptStopReason; const FloatPrecision: TMtxFloatPrecision = mvDouble; MaxIter: Integer = 500; Tolerance: double = 1.0E-8; const Verbose: TStrings = nil): Integer; overload;
Parameters 
Description 
Func 
Real function (must be of TRealFunction type) to be minimized. 
Pars 
Stores the initial estimates for parameters (minimum estimate). After the call to routine returns adjusted calculated values (minimum position). 
Consts 
Additional Fun constant parameteres (can be/is usually nil). 
ObjConst 
Additional Fun constant parameteres (can be/is usually nil). 
FMin 
Returns function value at minimum. 
StopReason 
Returns reason why minimum search stopped (see TOptStopReason). 
FloatPrecision 
Specifies the floating point precision to be used by the routine. 
MaxIter 
Maximum allowed numer of minimum search iterations. 
Tolerance 
Desired Pars - minimum position tolerance. 
Verbose 
If assigned, stores Fun, evaluated at each iteration step. Optionally, you can also pass TOptControl object to the Verbose parameter. This allows the optimization procedure to be interrupted from another thread and optionally also allows logging and iteration count monitoring.  

the number of iterations required to reach the solution(minimum) within given tolerance.

Minimizes the function of several variables by using the Nelder-Mead (Simplex) optimization method. The advantage of Simplex method is it does not require gradient or Hessian.

Problem: Find the minimum of the "Banana" function by using the Nelder-Mead (Simplex) method. 

Solution: The Banana function is defined by the following equation: 

 

 

Uses MtxVec, Math387, Optimization; function Banana(const Pars: TVec; const Consts: TVec; Const OConsts: Array of TObject): double; begin Banana := 100*Sqr(Pars[1]-Sqr(Pars[0]))+Sqr(1-Pars[0]); end; procedure Example; var Iters : integer; Pars : Array [0..1] of double; StopReason : TOptStopReason; begin // initial estimates for x1 and x2 Pars[0] := 0; Pars[1] := 0; Iters := Simplex(Banana,Pars,[],[],FMin,StopReason,mvDouble,1000); // stop if Iters >1000 or Tolerance < 1e-8 // Returns Pars = [1,1] and FMin = 0, meaning x1=1, x2=1 and minimum value is 0 end;
#include "MtxExpr.hpp" #include "Math387.hpp" #include "Optimization.hpp" double __fastcall Banana(TVec* const Parameters, TVec* const Constants, System::TObject* const * ObjConst, const int ObjConst_Size) { double* Pars = Parameters->PValues1D(0); return 100.0*IntPower(Pars[1] - IntPower(Pars[0],2),2) + IntPower(1.0 - Pars[0],2); } void __fastcall Example(); { double Pars[2]; double fmin; TOptStopReason StopReason; // initial estimates for x1 and x2 Pars[0] = 0; Pars[1] = 0; int iters = Simplex(Banana,Pars,1,NULL,-1,NULL,-1,fmin,StopReason,mvDouble,1000,1.0E-8,NULL); // stop if Iters >1000 or Tolerance < 1e-8 // Returns Pars = [1,1] and FMin = 0, meaning x1=1, x2=1 and minimum value is 0 }
Examples on GitHub
Copyright (c) 1999-2025 by Dew Research. All rights reserved.
What do you think about this topic? Send feedback!