You are here: Symbol Reference > MtxIntDiff Namespace > Functions > MtxIntDiff.QuadGauss Function
MtxVec VCL
ContentsIndex
PreviousUpNext
MtxIntDiff.QuadGauss Function

Evaluate the numerical integral between lower and upper bound using Gauss quadrature algorithm.

Pascal
function QuadGauss(Fun: TRealFunction; lb: double; ub: double; const Constants: TVec; Const ObjConst: Array of TObject; out StopReason: TIntStopReason; const FloatPrecision: TMtxFloatPrecision; QMethod: TQuadMethod = qmGauss; Tolerance: double = 1.0E-4; MaxIter: Integer = 8): double; overload;

the numerical approximate on integral of function Fun between limits lb and ub.

This version calculates base points and weights on the fly.

Copyright (c) 1999-2025 by Dew Research. All rights reserved.
What do you think about this topic? Send feedback!