You are here: Symbol Reference > MtxIntDiff Namespace > Functions > MtxIntDiff.NumericGradRichardson Function
MtxVec VCL
ContentsIndex
PreviousUpNext
MtxIntDiff.NumericGradRichardson Function

Numerical gradient by high precision numerical differentiation.

Pascal
procedure NumericGradRichardson(Fun: TRealFunction; const Pars: TVec; const Consts: TVec; const ObjConst: Array of TObject; const Grad: TVec);
Parameters 
Description 
Fun 
Real function of several variables. 
Pars 
Function variables. 
Consts 
Array of additional constants which can be used in math formula. 
ObjConst 
Array of additional constants (pointers) which can be used in math formula. 
Grad 
Returns calculated gradient. If needed, Grad Length and Complex properties are adjusted automatically. 

Calculates the numerical gradient by high precision numerical differentiation. The algorithm uses Richardson extrapolation of three values of the symmetric difference quotient. The gradient step size is defined by GradStepSize global variable. Normally the optimal stepsize depends on seventh partial derivatives of the function. Since they are not available, the initial value for GradientStepSize is Exp(Ln(EPS)/7)*0.25, as suggested by Spellucci.

Copyright (c) 1999-2025 by Dew Research. All rights reserved.
What do you think about this topic? Send feedback!