You are here: Symbol Reference > MtxExpr Namespace > Classes > Matrix Record > public > EigGen Method > Matrix.EigGen Method (TMtx, TVec, TVec, TBalanceType, TEigBalancing, TVec, TVec, TMtx, TMTx)
MtxVec VCL
ContentsIndex
PreviousUpNext
Matrix.EigGen Method (TMtx, TVec, TVec, TBalanceType, TEigBalancing, TVec, TVec, TMtx, TMTx)

Computes generalized eigenvalues and eigenvectors of a non-symmetric matrix.

Pascal
procedure EigGen(B: TMtx; DAlpha: TVec; DBeta: TVec; Balance: TBalanceType; BInfo: TEigBalancing; rconde: TVec = nil; rcondv: TVec = nil; VL: TMtx = nil; VR: TMTx = nil); overload;

Computes for a pair of N-by-N real nonsymmetric matrices (A = Self,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors (VL and/or VR). 

A generalized eigenvalue for a pair of matrices (A,B) is a scalar lambda or a ratio alpha/beta := lambda, such that A - lambda*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta = 0, and even for both being zero. 

The right eigenvector v(j) corresponding to the eigenvalue lambda(j) of (A,B) satisfies: 

 

A * v(j) = lambda(j) * B * v(j).

 

The left eigenvector u(j) corresponding to the eigenvalue lambda(j) of (A,B) satisfies: 

 

u(j)**H * A = lambda(j) * u(j)**H * B .

 

where u(j)**H is the conjugate-transpose of u(j). The individual eigevalues can be computed as: 

 

lambda(j) = dAlpha(j)/dBeta(j);

 

Optionally also computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors , reciprocal condition numbers for the eigenvalues (rconde), and reciprocal condition numbers for the right eigenvectors (rcondv).

Copyright (c) 1999-2025 by Dew Research. All rights reserved.
What do you think about this topic? Send feedback!