You are here: Symbol Reference > LinearSystems Namespace > Functions > LinearSystems.LTIZeros Function
DSP Master VCL
ContentsIndex
Example

If a linear time invariant system is represented by A,B,C,D, a zero pole representation can be obtained like this:

    uses MtxExpr, Math387, MtxVec, MtxVecTee, MtxVecEdit,
         LinearSystems;

    procedure TForm1.Button1Click(Sender: TObject);
    var a: Matrix;
        z,p,b,c: Vector;
        d,k: Double;
    begin
            a.SetIt(3,3,false,[0,1,2,
                               2,3,4,
                               5,6,3]);
            b.SetIt(false,[1,0.5,2]);
            c.SetIt(false,[1,2.5,2]);
            d := 1;
    //        ....   get a state space version and store in A,B,C,D
            a.Eig(p); //compute poles
            LTIZeros(z,k,a,b,c,d); //get zeros and gain
            ViewValues(z,'Zeros',true);
            ViewValues(p,'Poles',true);
    end;

 

    #include "MtxExpr.hpp"
    #include "MtxVecEdit.hpp"
    #include "MtxVecTee.hpp"
    #include "LinearSystems.hpp"

    void __fastcall TForm41::BitBtn1Click(TObject *Sender)
    {
      Vector z,p,b,c;
      double d,k;
      Matrix  a;

      a->SetIt(3,3,false,OPENARRAY(double,(0,1,2,
                        2,3,4,
                        5,6,3)));
      b->SetIt(false,OPENARRAY(double,(1,0.5,2)));
      c->SetIt(false,OPENARRAY(double,(1,2.5,2)));
      d = 1;
    //        ....   get a state space version and store in A,B,C,D
      a->Eig(p); //compute poles
      LTIZeros(z,k,a,b,c,d); //get zeros and gain
      ViewValues(z,"Zeros",true);
      ViewValues(p,"Poles",true);
    }
Copyright (c) 1999-2025 by Dew Research. All rights reserved.