
1

MtxVec Expression parser

Version 5.3, © Dew Research 2018

The purpose of the MtxVec expression parser is to allow the users of MtxVec and of the add-on

packages to expose more features of the underlying math libraries to their customers.

2

Getting Started

The syntax supported by the expression parser is very similar to Matlab/Scilab with some exceptions:

1.) The arrays and matrices are 0-based

2.) Division of two integers returns an integer for per element operator: 5./6 = 0, 5/.6 = 0

3.) The concatenation like [1, 2] requires comma between consecutive elements

4.) Consecutive elements are stored in the same row. The first index to access matrix elements is

row and the second is column. (row-major ordering).

5.) Many functions and constants are available with aliases: Tan(), tan(); False, false; etc.. (the

parser is case-sensitive).

6.) Memory management is to be “auto-reference-counted”, where memory is freed at the end

of the function unless the variable is reused before. (To be, because function declaration is

not yet possible).

7.) For most operators you can use the ANSI C like syntax. Some operators are also duplicated

like for example (“not” and “ ~ ”) and then (“or” and “|”) and (“and” and “&”)…

8.) Precedence of the colon operator is more than +,-,/,* and allows additions 2:3+1 = 3:4 or for

example 2:3 + 3:5 = 5:8, but brackets are needed for 2:(n-1).

9.) Built-in types include: string, integer, double, complex, double vector, double matrix, integer

vector, integer matrix, boolean, Boolean vector, boolean matrix, custom object. Double matrix

and vector can also hold complex values.

10.) Variables are statically typed. Once the type of the variable is set, the value can change, but

the type not anymore.

11.) Integer type is 64bit and there will be an error reported in case of "Integer overflow" or

"Division by zero".

The type of the variable is determined from the type of the first value assigned. A variable can be

undefined with a call to undefine(myvar1, myvar2,…). Once undefined, it can again receive a new type.

To define a real value:

a = 0.0

To define a 64bit integer:

a = 0

Conversion is possible:

b = Boolean(a), I = integer(a), d = double(a)

cast to integer is the same as:

I = TruncToInt(a)

To declare an integer vector:

a = [1,2,3,4]

To declare a double vector:

a = [1.0,2,3,4]

at least one parameter needs to be a double. To declare complex vector:

3

a = [1+1i, 2,3,4]

The imaginary part even if 1 needs to be always preceded with a number. To separate rows use the

semicolon:

A = [1+1i, 2; 3, 4] //2x2 complex value matrix

 To define an if-clause:

If b == 2

 a = 2

end

To define an If-else clause

If b == 2

 a = 2

else

 a = 3

end;

Semicolons can be present or absent. They don’t affect the flow of the code. The flow control

keywords like “if”, “else”, “end”, “continue”, “break”, “while”, “for” need to be on their own lines. The

while loop:

while (b == 2)

 a = 2

end

The “condition” can be in brackets or not. And the for-loop:

for k = 1:10

 j = j + 1

end;

The for-loop has one more flavor:

j = 0;

a = [4,5,6]

for k = a

 j = j + k

end; //computes the sum of values in a and returns 15

where the iterator will hold the value of the vector element from the current iteration. Comments

need to be preceded with “//”. Functions with multiple results, can be written like this:

(mag, phase) = CartToPolar(FFT([0:511]))

And of course, the most powerful features are index selectors:

A(0:2,2:3) = B(2:4;5:6); //to copy sub-matrix

a = [1,0,3,4];

mask = a <> 0;

d = a(mask); //perform gather operator by mask

d = d + 2; //modify the selected consecutive values with vector math

a(mask) = d; //scatter them back out

4

You can also omit the second parameter in the range operator:

a(2:) = b;

This will be executed as:

a(2:(2+length(b)-1)) = b;

To copy entire contents of "b" in to "a" starting at index 2.

Example for “break” or “continue”:

for k = a //on its own line

 if k > 2 //on its own line

 continue //on its own line

 end //on its own line

 j = j + k

end; //on its own line

To copy values to a string grid like object for display, it is possible to define:

grid1var := TExprGridVariable.Create;

expr.DefineCustomValue('sheet1', grid1var);

Then it is possible to write string values with implicit conversion to string like this:

sheet1(1,1) = "Test";

sheet1(0:2,1) = vector(0:2);

And of course to read values also:

a = sheet1(0,0)

b = sheet1(0:2,0:3) //matrix 3x4 (convert from string to double)

String operations include concatenation:

s = s + " " + "test"

s = ["Testing = ", k] //all items in the list are converted to string

Additionally, there are several string replace and compare functions available: StrToSample,

StrToCplx, CplxToStr, SampleToStr, FormatSample, ReplaceStr, CompareStr and Pos.

Some functions accept type as parameter:

b = sheet1(0:2,0:3, "integer") //returns integer matrix

Even though the "integer" type is a parameter and the string there could be a variable, the type

evaluation is static and happens only once at first run. The line is therefore locked to return integer

matrices only.

Possible automatic type promotions in expressions:

A B Math operation

Integer Double b = double(a)

Bool Integer b = integer(a)

5

Double Complex a = Cplx(a)

In general, all type conversions need to be written explicitly. This is to prevent hidden, automatic,

repetitive and costly conversions from integer to double or similar within loops. Below are several

tables showing the type combinations supported by the assign operator when dealing with indexes

and ranges.

6

Types

Type Purpose

Undefined State of variable until first value is assigned. The type is then set to the
type of the assigned value.

Double Real number in double precision or single precision (depends on library
build)

Range Two or three integer or real values in format 1:10 or 10:-1:0

String "Something"

Complex Real and Imaginary part in double precision (struct).

Vector Double precision array. Assumed orientation is single row, but can also be
accepted as a column by some routines. Vector can hold also complex
numbers.

Matrix Double precision 2D matrix. Matrix can also hold complex numbers. Rows
are stored consecutively.

Integer Integer number

Integer vector 1D array of 32bit integers, 16bit integers or 8bit unsigned integers.
Assumed orientation is single row, but can also be accepted as a column
by some routines.

Integer matrix 2D array of 32bit integers, 16bit integers or 8bit unsigned integers. Rows
are stored consecutively.

Boolean Can be True or False. Storage format is 32bit integer.

Boolean vector 1D array of 32bit boolean values. Assumed orientation is single row, but
can also be accepted as a column by some routines.

Boolean matrix 2D array of 32bit boolean values. Rows are stored consecutively.

Custom Used for arbitrary object types. Custom value typed object cannot be
assigned to other variables with the assign operator.

7

Operators

Operator Priority Description
!x

~x

not x

Not x

10 Logical operator when applied to booleans and bitwise not operator
when applicable to integers.

x % y

x mod y
10 Remainder operator applicable to integers and real numbers

x div y 30 Strictly integer division only operator.
x != y

x <> y

x ~= y

55 Not equal to operator

x & y

x and y

70 Logical "and" when applied to Booleans and bitwise "and" when
applied to integers

x >> y

x shr y

45 Bit shift integer, integer vector or integer matrix x by y bits right

x << y

x shl y

45 Bit shift integer, integer vector or integer matrix x by y bits left

x or y

x | y

80 Logical "or" when applied to Booleans and bitwise "or" when applied
to integers

x xor y

70 Logical "xor" when applied to Booleans and bitwise "xor" when applied
to integers

x = y 200 Assignment operator
x == y 55 Equal operator returns boolean or mask of Booleans
x' 10 Unary transpose (adjungate) vector/matrix operator
x * y 30 Matrix multiplication operator
x *. y

x .* y

30 Multiplication by element ignoring dimensions except for Length.

x + y 40 Add with matching dimensions. String concatenation.
x +. y

x .+ y

40 Add elements ignoring dimension except for Length.

x - y 40 Subtract with matching dimensions.
x -. y

x .- y

40 Subtract elements ignoring dimension except for Length.

+x 10 Plus sign
-x 10 Minus sign
x / y 30 Matrix division operator. Integer division returns real number.
x /. y

x ./ y

30 Division by element ignoring dimensions except for Length. Integer
division returns integer.

A \ y 30 Back division operator for matrix operations. x = A^(-1)*y is written as x
= A\y when A is matrix and y is matrix or vector. Coming from equation
Ax = y, where "x" is the solution of the linear system.

x:y

x:step:y

15 Range operator. Can be with integers or real numbers. X represents
start and y is the final value. If the step is not specified it is assumed to
be 1. Step can be positive or negative.

x < y 50 less than operator
x <= y 50 less than or equal to operator
x > y 50 greater than operator
x >= y 50 greater than or equal to operator
x ^ y 20 power operator

8

Assign operator with single parameter a (b) = c

Supported types and operations when a is Vector:

A b c Math operation

Vector Integer Integer a[b] = c

Vector Integer Double a[b] = c

Vector Integer Complex a[b] = c

Vector Integer Bool a[b] = integer(c)

Vector Range (i:j) or (i:j:k) Integer a[i:j] = c, scatter

Vector Range (i:j) or (i:j:k) Double a[i:j] = c, scatter

Vector Range (i:j) or (i:j:k) Complex a[i:j] = c, scatter

Vector Range (i:j) or (i:j:k) Bool a[i:j] = Integer(c), scatter

Vector Range (i:j) or (i:j:k) Vector a[i:j] = c, copy or scatter

Vector Integer vector Integer a[b] = c, scatter by
indices

Vector Integer vector Double a[b] = c, scatter by
indices

Vector Integer vector Complex a[b] = c, scatter by
indices

Vector Integer vector Bool a[b] = c, scatter by
indices

Vector Integer vector Vector a[b] = c, scatter by
indices

Vector Boolean vector Integer a[b] = c, scatter by mask

Vector Boolean vector Double a[b] = c, scatter by mask

Vector Boolean vector Complex a[b] = c, scatter by mask

Vector Boolean vector Bool a[b] = c, scatter by mask

Vector Boolean vector Vector a[b] = c, scatter by mask

Supported types and operations when a is Integer Vector:

a b c Math operation

Integer Vector Integer Integer a[b] = c

Integer Vector Integer Bool a[b] = integer(c)

Integer Vector Range (i:j) or (i:j:k) Integer a[i:j] = c, scatter

Integer Vector Range (i:j) or (i:j:k) Bool a[i:j] = Integer(c), scatter

Integer Vector Range (i:j) or (i:j:k) Integer Vector a[i:j] = c, copy or scatter

Integer Vector Range (i:j) or (i:j:k) Boolean Vector a[i:j] = c, copy or scatter

Integer Vector Integer vector Integer a[b] = c, scatter by
indices

Integer Vector Integer vector Bool a[b] = c, scatter by
indices

Integer Vector Integer vector Integer Vector a[b] = c, scatter by
indices

Integer Vector Integer vector Boolean Vector a[b] = c, scatter by
indices

Integer Vector Boolean vector Integer a[b] = c, scatter by mask

Integer Vector Boolean vector Bool a[b] = c, scatter by mask

9

Integer Vector Boolean vector Integer Vector a[b] = c, scatter by mask

Integer Vector Boolean vector Boolean Vector a[b] = c, scatter by mask

Supported types and operations when a is Boolean Vector:

a b c Math operation

Boolean Vector Integer Integer a[b] = (c <> 0)

Boolean Vector Integer Bool a[b] = c

Boolean Vector Range (i:j) or (i:j:k) Integer a[i:j] = (c <> 0), scatter

Boolean Vector Range (i:j) or (i:j:k) Bool a[i:j] = c, scatter

Boolean Vector Range (i:j) or (i:j:k) Boolean Vector a[i:j] = c, copy or scatter

Boolean Vector Integer vector Integer a[b] = (c <> 0), scatter by
indices

Boolean Vector Integer vector Bool a[b] = c, scatter by indices

Boolean Vector Integer vector Boolean Vector a[b] = c, scatter by indices

Boolean Vector Boolean vector Integer a[b] = (c <> 0), scatter by mask

Boolean Vector Boolean vector Bool a[b] = c, scatter by mask

Boolean Vector Boolean vector Boolean Vector a[b] = c, scatter by mask

Supported types and operations when treating a as “flattened” 1D Matrix:

Index = Cols*Row + Col

A b c Math operation

Matrix Integer Integer a[b] = c

Matrix Integer Double a[b] = c

Matrix Integer Complex a[b] = c

Matrix Integer Bool a[b] = integer(c)

Matrix Range (i:j) or (i:j:k) Integer a[i:j] = c, scatter

Matrix Range (i:j) or (i:j:k) Double a[i:j] = c, scatter

Matrix Range (i:j) or (i:j:k) Complex a[i:j] = c, scatter

Matrix Range (i:j) or (i:j:k) Bool a[i:j] = Integer(c), scatter

Matrix Range (i:j) or (i:j:k) Vector a[i:j] = c, copy or scatter

Matrix Integer vector Integer a[b] = c, scatter by
indices

Matrix Integer vector Double a[b] = c, scatter by
indices

Matrix Integer vector Complex a[b] = integer(c), scatter

Matrix Integer vector Bool a[b] = c, scatter by
indices

Matrix Integer vector Vector a[b] = c, scatter by
indices

Matrix Boolean vector Integer a[b] = c, scatter by mask

Matrix Boolean vector Double a[b] = c, scatter by mask

Matrix Boolean vector Complex a[b] = c, scatter by mask

Matrix Boolean vector Bool a[b] = Integer(c), scatter

Matrix Boolean vector Vector a[b] = c, scatter by mask

Matrix Boolean matrix Vector a[b] = c, scatter by mask

Matrix Boolean matrix Integer a[b] = c, scatter by mask

Matrix Boolean matrix Double a[b] = c, scatter by mask

10

Matrix Boolean matrix Complex a[b] = c, scatter by mask

Supported types and operations when treating a as “flattened” 1D integer Matrix:

Index = Cols*Row + Col

A b c Math operation

Integer Matrix Integer Integer a[b] = c

Integer Matrix Integer Bool a[b] = integer(c)

Integer Matrix Range (i:j) or (i:j:k) Integer a[i:j] = c, scatter

Integer Matrix Range (i:j) or (i:j:k) Bool a[i:j] = Integer(c), scatter

Integer Matrix Range (i:j) or (i:j:k) Integer Vector a[i:j] = c, copy or scatter

Integer Matrix Integer vector Integer a[b] = c, scatter by
indices

Integer Matrix Integer vector Bool a[b] = c, scatter by
indices

Integer Matrix Integer vector Integer Vector a[b] = c, scatter by
indices

Integer Matrix Boolean vector Integer a[b] = c, scatter by mask

Integer Matrix Boolean vector Bool a[b] = integer(c), scatter

Integer Matrix Boolean vector Integer Vector a[b] = c, scatter by mask

Integer Matrix Boolean matrix Integer Vector a[b] = c, scatter by mask

Integer Matrix Boolean matrix Integer a[b] = c, scatter by mask

Integer Matrix Boolean matrix Bool a[b] = Integer(c), scatter

Supported types and operations when treating a as “flattened” 1D Boolean Matrix:

Index = Cols*Row + Col

A b c Math operation

Boolean Matrix Integer Integer a[b] = c <> 0

Boolean Matrix Integer Bool a[b] = c

Boolean Matrix Range (i:j) or (i:j:k) Integer a[i:j] = c <> 0, scatter

Boolean Matrix Range (i:j) or (i:j:k) Bool a[i:j] = c, scatter

Boolean Matrix Range (i:j) or (i:j:k) Boolean Vector a[i:j] = c, copy or scatter

Boolean Matrix Integer vector Integer a[b] = c <> 0, scatter by
indices

Boolean Matrix Integer vector Bool a[b] = c, scatter by indices

Boolean Matrix Integer vector Boolean Vector a[b] = c, scatter by indices

Boolean Matrix Boolean vector Integer a[b] = c <> 0, scatter by mask

Boolean Matrix Boolean vector Bool a[b] = c, scatter by mask

Boolean Matrix Boolean vector Boolean Vector a[b] = c, scatter by mask

Boolean Matrix Boolean matrix Boolean vector a[b] = c, scatter by mask

Boolean Matrix Boolean matrix Integer a[b] = c <> 0, scatter by mask

11

Assign operator with two parameters a (b, c) = d

Supported types and operations when treating a as 2D Matrix:

b c d Math operation

Range (i:j) or integer Range (k:n) or integer Integer a[i:j, k:n] = c, scatter

Range (i:j) or integer Range (k:n) or integer Double a[i:j, k:n] = c, scatter

Range (i:j) or integer Range (k:n) or integer Complex a[i:j, k:n] = c, scatter

Range (i:j) or integer Range (k:n) or integer Bool a[i:j, k:n] = Integer(c), scatter

Range (i:j) or integer Range (k:n) or integer Vector a[i:j, k:n] = c, copy

Range (i:j) or integer Range (k:n) or integer Matrix a[i:j, k:n] = c, copy

Supported types and operations when treating a as 2D Integer Matrix:

b C d Math operation

Range (i:j) or integer Range (k:n) or integer Integer a[i:j, k:n] = d, scatter

Range (i:j) or integer Range (k:n) or integer Bool a[i:j, k:n] = Integer(d), scatter

Range (i:j) or integer Range (k:n) or integer Integer Vector a[i:j, k:n] = d, copy

Range (i:j) or integer Range (k:n) or integer Integer Matrix a[i:j, k:n] = d, copy

Supported types and operations when treating a as 2D Boolean Matrix:

B c D Math operation

Range (i:j) or integer Range (k:n) or integer Integer a[i:j, k:n] = d <> 0, scatter

Range (i:j) or integer Range (k:n) or integer Bool a[i:j, k:n] = d, scatter

Range (i:j) or integer Range (k:n) or integer Boolean Vector a[i:j, k:n] = d, copy

Range (i:j) or integer Range (k:n) or integer Boolean Matrix a[i:j, k:n] = d, copy

12

String handling functions

CompareStr(a, b): returns 0 if both strings match with case sensitivity.

CompareText(a, b): returns 0 if both strings match with case insensitivity.

CplxToStr(x): converts x from complex to string.

FormatCplx(x, reFormat, imFormat):

converts x from string according to format. Examples of good format values:

" 0.###;-0.###", "+0.###i;-0.###i"

FormatSample(x, format): converts x from string according to format.

Pos(SubStr, Str): returns -1 if substring is not found and otherwise 0-based index position.

Pos(SubStr, Str, Offset):

returns -1 if substring is not found and otherwise 0-based index position. The search starts at offset.

ReplaceStr(x, AFromText, AToText):

case sensitive replaces FromText to ToText within x.

ReplaceText(x, AFromText, AToText):

case insensitive replaces FromText to ToText within x.

SampleToStr(x): converts x from double to string.

IntToStr(x): converts x from integer to string.

File handling functions

a = csvRead("C:\Work\File.txt"):

returns matrix read from the comma delimited text file.

a = csvRead("C:\Work\File.txt", "integer"):

returns integer, boolean or double/complex matrix read from the text file delimited with commas.

a = csvRead("C:\Work\File.txt", "integer", Delimiter):

returns integer, boolean or double/complex matrix read from the text file delimited with the

Delimiter char.

csvWrite("C:\Work\File.txt", a): writes variable a, which must be vector or matrix, to

comma delimited text file.

csvWrite("C:\Work\File.txt", a, Delimiter): writes variable a, which must be

vector or matrix, to comma delimited text file.

DirectoryCreate("C:\Work\File.txt"): returns True, if the directory was created.

13

DirectoryDelete("C:\Work\File.txt"): returns True, if the directory was deleted.

DirectoryExists("C:\Work\File.txt"): returns True, if the directory exists.

FileClose(aHandle): returns aHandle for the file in the path in parameter. To close the file

call fileclose.

FileCopy("Src.dat", "Dst.dat"): returns True, if the file was copied.

FileDelete("C:\Work\File.txt"): returns True, if file was deleted.

FileExists("C:\Work\File.txt"): returns True, if the file exists.

FileMove("Src.dat", "Dst.dat"): returns True, if the file was moved.

(aHandle) = FileOpen("C:\Work\File.dat"): returns aHandle for the file in the path

in parameter. To close the file call FileClose.

Pos = FilePosition(aHandle): returns the position Pos within the file designated with

aHandle. Use OpenFile to obtain a file handle.

a = FileRead(aHandle, "double"): reads a single double value from files current

position with aHandle and stores it in a. Use OpenFile to obtain a file handle and CloseFile to close it.

a = FileRead(aHandle, "double", Count): reads Count double value from files

current position with aHandle and stores it in to vector a. Use OpenFile to obtain a file handle and

CloseFile to close it.

FileSetPosition(aHandle, Pos):

seek to position Pos within the file designated with aHandle. Use OpenFile to obtain a file handle.

size = FileSize(aHandle):

returns the Size of the file designated with aHandle. Use OpenFile to obtain a file handle.

FileWrite(aHandle, a):

write contents of variable a to file designated with aHandle. Use OpenFile to obtain a file handle.

General math functions

All functions accept real and complex values as input where applicable. The input/result can be

individual value, vector or matrix:

Abs, Sin, Sinh, Sec, Sech, Cos, Cosh, Csc, Csch, Tan, Tanh, Cot,

Coth,

ArcSin, ArcSinh, ArcSec, ArcSech, ArcCos, ArcCosh, ArcCsc, ArcCsch,

ArcTan, ArcTan(,), ArcTanh, ArcCot, ArcCoth,

Exp, Exp2, Exp10, Ln, Log, Log2, Log10, LogN, Cbrt, Sqrt, Sqr, Cis,

Expj, Conj, DegToRad, RadToDeg, Imag, Real, Pow, Power, IntPower,

Flip,

14

Additionally:

IsInf, IsNan, IsInfNan, Lcm, Gcd, Pythag, Min, Max, Rem, Sgn, Cplx

The following aliases are applicable:

Ln(x) for Log(x)

Expj(x) for Cis(x)

Integer(x) for TruncToInt(x)

IntPow for IntPower

Pow for Power

IsNanInf for IsInfNan

Rounding

Ceil(x): the smallest integer greater than or equal to 'x'

Floor(x): the biggest integer less than or equal to 'x'

Frac(x): returns fractional part of a real number.

Round(x): rounds 'x' value to the nearest whole number and returns double

RoundToInt(x): rounds 'x' value to the nearest whole number and returns integer

Trunc(x): truncates 'x' value towards zero and returns double

TruncToInt(x): truncates 'x' value towards zero and returns integer

Vector specific functions

AutoCorrBiased(x, Lag): returns auto-correlation of x.
AutoCorrNormal(x, Lag): returns auto-correlation of x.

AutoCorrUnbiased(x, Lag): returns auto-correlation of x.
CumSum(x):

returns cumulative sum of data in vector x = [1,2,..] => y = [1,1+2,1+2+3,..] or columns in the matrix.

DCT(x): returns discrete cosine transform of x
Dct(x): returns discrete cosine transform of x
Difference(x, lag): returns vector of differences between elements lag a part.

FFT(x): returns 1D FFT of vector or of rows of matrices.
IDCT(x): returns inverse discrete cosine transform of x
IFFT(x): returns 1D Inverse FFT of vector or of rows of matrices.

IFFTToReal(x): returns 1D Inverse real FFT of vector or rows of matrices.
Integrate(x): Integrate all elements in x once.
Integrate(x, init):
Integrate all elements in x using initial values in Init vector Length(Init) times.

Kron(vec1, vec2): returns the Kronecker product between Vec1 and Vec2.

k = Kurtosis(x): computes the fourth moment from the data in x.
k = Kurtosis(x, mean, stddev):
computes the fourth moment from data in x and stddev(x) and mean(x).

Length(x): element count in vector/matrix x
Max(x): largest element in x
Mean(x): average value of elements in x
Median(x): returns median value of data in vector x.

15

Min(x): smallest element in x

Norm(x): squared norm of complex value
Norm1(x): returns the 1-norm of the matrix x.
NormC(x): returns C-Norm of data in x.
NormFro(x): returns the Frobenius norm of the matrix x.
NormInf(x): returns the Infinity norm of the matrix x.
NormL1(x): returns L1-Norm of data in x.
NormL2(x): returns L2-Norm of data in x.
Ones(Len): returns a vector of ones Len in size.
x = PolarToCart(amplt, phase): converts polar coordinate to cartesian coordinate
PolyCoeff(Roots): returns polynom coefficients from Roots.
PolyEval(Values, Coeff): returns polynom defined with Coeff evaluated at Values.
PolyRoots(Coeff): returns polynom roots from coefficients in Coeff.
Product(x): product of elements in x
Reverse(x): reverses indexes in vector x

Rms(x): root mean square of elements in x
Rotate(x,offset): rotates the data in x by offset left or right
SortAscend(x): sorts values in vector x or values in rows of matrix x.
SortDescend(x): sorts values in vector x or values in rows of matrix x.

Sum(x): sum of elements in x
SumOfSqr(x): returns sum of squares of x.

ThreshBottom(x, Bottom): returns Bottom, if x < Bottom. Bottom must be a scalar.
ThreshTop(x, Top): returns Top, if x > Top. Top must be a scalar.
Zeros(Len): returns a vector of zeros Len in size.

Matrix specific functions

Most vector functions work also on matrices on the per row basis or have a matrix specific variant.

The following is additionally available:

Cols(x): column count of matrix x
CumSum(x):

returns cumulative sum of data in vector x = [1,2,..] => y = [1,1+2,1+2+3,..] or columns in the matrix.

Eig(x): returns eigevalues (d) of x
Eig(x, l, r):

returns eigevalues (d) and stores left eigenvectors in l and right eigenvectors in r.

Eye(r,c): returns non-square matrix size r x c of zeros with ones on the main diagonal.
FFT2D(x): returns 2D FFT of matrix x.

IFFT2D(x): returns 2D Inverse FFT of matrix x.

IFFT2DToReal(x): returns 2D Inverse real FFT of matrix x.

Hankel(firstColumn): returns hankel matrix with first column vector specified as parameter.
LQR(x, Q, R): returns the LQR composition. The L is returned as function result and Q and R
are stored in to the parameters.
MtxIntPower(x, n): returns matrix x raised to integer power of n.
MtxPower(x, r): returns matrix x raised to arbitrary power r.
MtxSqrt(x, n): returns square root of the matrix.
Ones(r,c): returns a vector or a matrix of ones r x c in size.

16

Rotate90(x): returns the matrix x rotated by 90 degrees clockwise.

Rows(x): row count of matrix x
S = SVD(x): returns singular values of matrix x.
S = SVD(x, u, v): returns singular values of matrix x and U and V values in parameters..

X = SVDSolve(a,b,s):

returns the svd solution of a linear system AX = B. Singular values are returned in s. Function returns
solution x.

X = SVDSolve(a,b,s, tol): returns the svd solution of a linear system AX = B. Singular
values are returned in s. Rejection tolerance is specified with tol. Function returns solution x.

ZScore(x): returns zscore of diagonal elements of matrix x.
Zeros(r,c): returns a vector or a matrix of zeros r x c in size.

