
Users Guide for Dew Signal for .NET

1

Dew Signal .NET v6
Users guide for Visual Studio.NET C#

Dew Signal version 2021, rev 1.2
© 1999-2021 Dew Research
www.dewresearch.com

Users Guide for Dew Signal for .NET

2

 Contents

1 Displaying the signal .. 3

1.1 Simple start ... 3

1.2 Browsing the signal ... 4

1.3 Reading multi-channel files ... 5

1.4 Showing two channels ... 6

1.5 Showing two channels second example ... 7

1.6 Summary ... 7

2 Frequency analyzer ... 9

2.1 Dual channel frequency analyzer .. 9

2.2 Adding peak marking ... 10

2.3 Adding user dialogs and editors .. 10

3 Recording .. 12

3.1 Simple monitoring of the recording signal .. 12

3.2 Monitoring and recording to file ... 13

4 Playback ... 15

4.1 Playback monitoring .. 15

4.2 Variable playback speed, tone generator ... 16

5 Batch file processing ... 18

6 Inner workings ... 19

7 Classes ... 20

7.1 Signal processing properties ... 20

7.2 Properties for pipeline control .. 21

7.3 Writing custom TSignal components .. 22

8 Dialogs ... 23

Users Guide for Dew Signal for .NET

3

1 Displaying the signal

Objective: We have a signal stored in the file and would like to display its contents on the chart.

1.1 Simple start

1. Start a new project and put TSignalRead and SignalChart on the Form.

2. Add a FastLine series to the Chart, you can do that by right click on chart and choosing “Edit…”

from context menu and then press “Add…” in the Series tab. Go to Legend tab and uncheck the

“Visible”.

3. Expand the SignalChart.Signals property.

4. Add a new Item to the list and specify SignalRead1 as the Input and Series1 for the series

property. (Figure 1) Once complete close the popup window.

Figure 1 Connecting TSignal with SignalChart.

5. Set TSignalRead.FileName property to the bz.sfs filename in the DSP Master examples folder.

6. Add the following line to the Forms Load event:

private void Form1_Load(object sender, EventArgs e)
{
 tSignalRead1.Update();
}

7. Press F5 to run application. Once started, the chart would be showing the first 128 samples or so

of the signal.

Discussion:

The program has read data from the file and displayed it on the chart. tSignalRead1.Data TVec object

holds that data. You can access SignalRead1.Length individual values via tSignalRead1.Data[i] property.

Users Guide for Dew Signal for .NET

4

1.2 Browsing the signal

Now we will add the application the ability for the user to scroll or browse through the signal.

1. Dock signalChart1 to Top, add a Panel to form and dock it to Bottom. Then dock SignalChart1 to

Fill. This gives us space to put user controls on the form.

2. Put two FloatEdit controls on the new panel and name them positionEdit and samplesEdit. Add

labels in front of them. One should say Position and the other Samples.

3. Set properties IntegerIncrement to true and ReFormat to 0 for both FloatEdit controls. Set

samplesEdit.Value to 256.

Figure 2 Adding browse controls

4. Now define positionEdit.TextChanged and samplesEdit.TextChanged events like this:

private void positionEdit_TextChanged(object sender, EventArgs e)
{
 tSignalRead1.RecordPosition = positionEdit.IntPosition;
}

private void samplesEdit_TextChanged(object sender, EventArgs e)
{
 tSignalRead1.Length = samplesEdit.IntPosition;
 tSignalRead1.Update();

}

5. Press F5 to compile and run the project.

6. Try out the new controls. Put the cursor inside of them and use the Up and Down buttons.

7. Press and Hold CTRL and double click inside the edit control. A window will be displayed:

Users Guide for Dew Signal for .NET

5

Figure 3 Editing number properties

Here we can specify the step and number formatting. Set Increment to 10, press OK and try to use the

Up/Down buttons on the keyboard.

8. Change the form Load event like this:

private void Form1_Load(object sender, EventArgs e)
{
 tSignalRead1.Update();
 Text = tSignalRead1.SamplingFrequency.ToString("Sampling frequency = 0.00Hz");
}

9. Right click on the chart, choose “Edit…”, and specify a Title for the bottom Axis: Time [s].

Discussion:

tSignalRead1 contains many properties that describe the signal beside the SamplingFrequency property.

See the help file for their description. Note that setting tSignalRead1.RecordPosition automatically calls

tSignalRead1.Update.

1.3 Reading multi-channel files

1. Find a two channel (stereo) wav file on your disk and assign it to tSignalRead1.FileName

property.

2. Place TSignalDemux component on the Form and set its Input property to tSignalRead1.

3. Expand the signalChart1.Signals property and change the Input of the first Item from tSignalRead1 to

tSignalDemux1.

4. Modify events like this:

private void Form1_Load(object sender, EventArgs e)
{
 tSignalRead1.Update();
 tSignalDemux1.Update();
 Text = tSignalRead1.SamplingFrequency.ToString("Sampling frequency = 0.00Hz");
}

private void positionEdit_TextChanged(object sender, EventArgs e)
{
 tSignalRead1.RecordPosition = positionEdit.IntPosition;
 tSignalDemux1.Update();
}

private void samplesEdit_TextChanged(object sender, EventArgs e)
{
 tSignalRead1.Length = samplesEdit.IntPosition;

Users Guide for Dew Signal for .NET

6

 tSignalRead1.Update();
 tSignalDemux1.Update();
}

5. Press F5 to run the application. The application is now showing the left channel of the two

channel wav file.

Discussion:

We could easily place two TSignalDemux components on the Form. tSignalDemux1.Channel property

specifies the channel number to demultiplex from the stream. In general however, the channel count

can be any number and for that reason we need a list whose item count can adjust automatically to

tSignalRead1.ChannelCount.

1.4 Showing two channels

1. Delete tSignalDemux1 component and place TSignalDemuxList component on the Form.

2. Assign tSignalRead1 to tSignalDemuxList1.Input property.

3. Add a second FastLine series to the signalChart1.

4. Expand the signalChart1.Signals property and add a new (second) item to the list:

a. Set the Inputs of the first item to tSignalDemuxList1. Set the InputsItemIndex property

of the first item to 0. This means channel 0 in the list of channels.

b. Set the Inputs of the second item to tSignalDemuxList1. Set the InputsItemIndex

property of the second Item to 1. This means channel 1 in the list of channels. Assign

fastLine2 to the Series property.

5. Set tSignalDemuxList1.Count to 2.

6. Modify events like this:

7. Press F5 to run the application. You can now see two channels displayed in the chart.

Discussion:

The Pull method will call Update for all the components chained together with their Input/Inputs

properties. In our case it will first call tSignalRead1.Update and then adjust the tSignalDemuxList1.Count

property to match the tSignalread1.ChannelCount. It will then call first tSignalDemuxList[0].Update and

then tSignalDemuxList[1].Update.

Assuming you have a graph connected components, the picture shows how the Pull method will

progress.

Users Guide for Dew Signal for .NET

7

Figure 4 Pull progression graph

Each circle represents one component and each arrow shows that previous component in line is

assigned to the Input property of the next component in line. When you call Pull method of component

"1", this will cause recalculation of all components from 0 to 1, starting at 0 (black arrows). When the

Pull method is then called for components "3" and "2", their recalculation request (blue and green) will

not go pass the black arrows, because those components have already been updated.

If however, component "2" would call Pull once more, the recalculation request would progress until

component "0" and Pull request from components "1" and "3" would only update those parts of the

graph that has not yet been updated.

The graph can consist from lists of components at each node. This means that you can concurrently process

arbitrary number of channels without knowing in advance how many channels the source will have.

1.5 Showing two channels second example

In the previous example, we had to manually set the tSignalDemuxList1.Count. This was necessary to

allow the signalChart1 to know at the time when the Inputs property was assigned the count of

channels. If that would not be the case, we have to let the SignalChart1 know that something has

changed:

private void Form1_Load(object sender, EventArgs e)
{
 tSignalDemuxList1.Pull(); //match the list count to the channel Count
 signalChart1.Signals.UpdateInputs();
 tSignalDemuxList1.UpdateNotify();
 Text = tSignalRead1.SamplingFrequency.ToString("Sampling frequency = 0.00Hz");
}

UpdateInputs will check tSignalDemuxList1.Count and reconnect individual items to the signalChart1 by

using the SignalChart.Signals[i].InputsItemIndex property. The UpdateNotify method can be called

always when we know that the component is connected to some chart and when we would only like to

update the chart and not also trigger recalculation. The Update method namely triggers recalculation of

the component and updates any associated charts.

1.6 Summary

• The Pull method will call Update for all components in the direct chain, but not in the branches.

0 1

2

3

Users Guide for Dew Signal for .NET

8

• The Update method will fetch whatever data the component connected to Input property has,

recalculate that data according with its function, place the result in its own Data property and

notify any associated charts to update the display.

• The UpdateNotify method will not trigger recalculation, but only notify associated charts, that

new data is to be displayed.

• If we would like to call the Pull method, but not update the charts, there is a special

SuspendNotifyUpdate property that can be set to false.

Users Guide for Dew Signal for .NET

9

2 Frequency analyzer
When dealing with signals one of the first things we would like to look at is the frequency spectrum. We

continue with the project from the previous chapter.

2.1 Dual channel frequency analyzer
1. Take the project from the previous chapter and add SpectrumChart at the top and one Splitter

between SignalChart and SpectrumChart. SpectrumChart dock is Top, SignalChart is Fill and the

Splitter is Top.

2. Add two FastLine series to SpectrumChart.

3. Insert TSpectrumAnalyzerList in the form. Set Inputs property equal to tSignalDemuxList1.

4. Add two items to SpectrumChart.Spectrums property and make the following connections:

a. Set the Inputs of the first item to tSpectrumAnalzyerList1. Set the InputsItemIndex

property of the first item to 0. This means channel 0 in the list of channels. Assign

fastLine3 to the Series property.

b. Set the Inputs of the second item to SpectrumAnalyzerList1. Set the InputsItemIndex

property of the second Item to 1. This means channel 1 in the list of channels. Assign

fastLine4 to the Series property.

See Figure 5 on how the form should be looking now.

Figure 5 Frequency analyzer window

5. Modify the events like this:

6. Press F5, recompile and run the application. Change the Samples and Position edit boxes to see

how the signal looks.

Discussion:

We call tSignalRead1.Update first and then tSpectrumAnalyzer1.Pull. Shouldn’t Pull also call

SignalRead1.Update? Then answer is no, because the Update method notified all connected

components that it has already updated.

Users Guide for Dew Signal for .NET

10

If the Pull method would be called twice, the second call would reach tSignalRead1, which would

advance the cursor position in the file and read the next frame. You could Pull until the return value of

the function would be equal to TPipeState.pipeEnd, which would signal that the end of the file has been

reached.

When we change the number of samples to be displayed however we do not want to advance the read

position in the file and that it is why we still call tSignalRead1.Update before calling Pull. Figure 6 shows

that Pull only progressed until tSignalDemuxList1. The green arrow shows the part that was already

done when we called tSignalRead1.Update. The tSignalDemuxList1.Update and tSpectrumAnalyzerList1.

Update only were called by the Pull method.

In case of PositionEdit remember that setting tSignalRead1.RecordPosition also calls Update.

Figure 6 Pull progression graph

2.2 Adding peak marking
1. Right click on the spectrumChart1 choose Edit… and add a new Points series to the list of the

series.

2. Select the Tools tab and add a new Spectrum mark tool to the tools panel.

3. Fill in the parameters of the Spectrum mark tool, by setting the Spectrum to fastLine4 and Mark

series to points1.

4. Close the Chart editor and run the app.

Although you can see the peak and apply marks, there are is still some fine tuning necessary. Start

Chart editor again and:

5. Points series: set Style to circle. Width and Height to 3 pixels. Marks->Style panel, check the Visible box,

Marks->Format panel, check the Transparent box. Marks->Arrow, set distance to 10.

6. Bottom Axis: Labels->Style, set minimum separation to 0% and Style to Text. Minor->Ticks,

Visible to false.

7. Close Chart editor and run the app.

Discussion:

Note that you can click the marked peaks again to unmark them and if you want to remove them all you

can double click the chart. The zoom (click and drag down) and pan (right click and drag) also remain

functional.

2.3 Adding user dialogs and editors
1. Insert MenuStrip to the Form and add 6 items: Edit chart -> (Top Chart, Bottom Chart) and Edit

Spectrum ->(Left channel, Right Channel).

SignalRead Demux Spectrum

Users Guide for Dew Signal for .NET

11

2. Insert SpectrumAnalyzerDialog from and Editor from TeeChart. Set SourceList property of

SpectrumAnalyzerDialog to tSpectrumAnalyzerList1.

3. Add the following Click events for each menu item:

private void topChartToolStripMenuItem_Click(object sender, EventArgs e)
{
 editor1.Chart = spectrumChart1;
 editor1.ShowModal();
}

private void bottomChartToolStripMenuItem_Click(object sender, EventArgs e)
{
 editor1.Chart = signalChart1;
 editor1.ShowModal();
}

private void leftChannelToolStripMenuItem_Click(object sender, EventArgs e)
{
 spectrumAnalyzerDialog1.SourceListIndex = 0;
 spectrumAnalyzerDialog1.Execute();
}

private void rightChannelToolStripMenuItem_Click(object sender, EventArgs e)
{
 spectrumAnalyzerDialog1.SourceListIndex = 1;
 spectrumAnalyzerDialog1.Execute();
}

4. Add the OnParameterUpdate event to tSpectrumAnalyzerList1. This even is triggered when the

user presses OK on the Spectrum Analyzer dialog. The sender is the TSpectrumAnalyzer object

being edited.

private void tSpectrumAnalyzerList1_OnParameterUpdate(object Sender)
{
 (Sender as TSpectrumAnalyzer).Update();
}

5. Press F5 and run the application.

Discussion:

Try running the chart editors. You can change the series and peak mark tool parameters. When running

the Spectrum Analyzer dialogs, you have an option to specify the dialog to be "Live" from the bottom

Options menu. When "Live" all changes to the settings are immediately visible on the charts. Some

parameters displayed in the dialog are not always applicable and that is why SpectrumAnalyzerDialog.

TabsVisible property is there.

Users Guide for Dew Signal for .NET

12

3 Recording
Recording is supported for any channel count, sampling frequency and bit depth supported by the

underlying hardware.

3.1 Simple monitoring of the recording signal
This example will show how you can display the left and right recorded channel on the same chart in

real time. The data is not written to the disk.

1. Start a new project and put one Panel on the form and Dock it to the bottom. Put two buttons

on it, one labeled Start and one Stop. Then put one SignalChart on the Form and set it's Dock

property to Fill.

2. Insert one SignalIn component , one TSignalList component and one SignalTimer.

Figure 7 Signal monitor form

3. Set SignalTimer.Frequency to 10 and fill in its OnTimer event like this:

private void signalTimer1_OnTimer(object sender, EventArgs e)
{
 tSignalList1[0].Length = 1024;
 tSignalList1[1].Length = 1024;
 signalIn1.MonitorData(tSignalList1[0], tSignalList1[1]);
 tSignalList1.UpdateNotify();
}

4. Define the Click events for the start and stop button:

private void buttonStart_Click(object sender, EventArgs e)
{
 signalIn1.Start();
 signalTimer1.Enabled = true;
}

private void buttonStop_Click(object sender, EventArgs e)
{
 signalTimer1.Enabled = false;
 signalIn1.StopAtOnce();
}

5. Right click SignalChart, choose Edit…, and add two new FastLine series: fastLine1 and fastLine2.

Users Guide for Dew Signal for .NET

13

6. Connect TSignalList SignalChart.Signals property. Create two items in Signals collection, set

Inputs = tSignalList1, InputsItemIndex = 0 and Series = fastLine1 for the first item and Inputs =

tSignalList1, InputsItemIndex = 1 and Series = fastLine2 for the second.

Figure 8 Connecting to chart

7. Set tSignalList1.Count to 2 and signalIn1.ChannelCount to 2.

8. Press F5 to run the application. Press the Start button. You should be seeing two wav channels

being streamed on the chart.

Discussion:

If your audio hardware allows it, try changing the bit depth to 24bit, by setting signalIn1.Quantization to

24. When increasing the sampling frequency or the length of the monitored signal (tSignalList1[0]) be

careful to also increase the signalIn1.BufferSize. BufferSize*BufferCount in bytes should be

approximately 2 seconds of recording with given ChannelCount, Bit depth and sampling frequency. If

not, the recording could be skipping.

3.2 Monitoring and recording to file
We will upgrade the existing monitoring project by adding the "record to file" feature

1. Put TSignalWrite component to the form.

2. Set tSignalWrite1.Input to signalIn1

3. Set tSignalWrite1.Precision = prSmallInt; We must be careful that SignalWrite precision matches

SignalIn.Quantization.

4. Set tSignalWrite1.FileName to a file with a .wav extension to record to.

5. Define signalIn1.OnBufferFilled with following code:

private bool signalIn1_OnBufferFilled(object Sender)
{
 tSignalWrite1.Pull();
 Text = String.Format("Written: {0:0} [KB]", tSignalWrite1.BytesWritten() / 1024);
 return true;
}

6. Modify the Click event for the Stop button:

Users Guide for Dew Signal for .NET

14

private void buttonStop_Click(object sender, EventArgs e)
{
 signalTimer1.Enabled = false;
 signalIn1.StopAtOnce();
 tSignalWrite1.CloseFile();
}

We have to close the file once the recording has finished, or the file be written from the point where

it stopped each time the Start is pressed again.

7. Press F5 to run the application. Press Start.

Discussion:

The TSignalWrite is now directly connected to the SignalIn. This does not give us the ability to process

the signal, because the signal is multiplexed in two channels. If we would want the recorded signal to

pass through a digital filter, we would have insert TSignalDemuxList, TSignalFilterList and TSignalMuxList

in between.

Users Guide for Dew Signal for .NET

15

4 Playback
This chapter explains how to setup the playback from a file and from the memory and an example on

how to vary the playback speed.

4.1 Playback monitoring
1. Start a new project and put one Panel on the form and dock it to the bottom. Put two buttons

on it, one labeled Start and one Stop. Then put one SignalChart on the Form and set its Dock

property to Fill.

2. Add two FastLine series to the Chart.

3. Now put SignalOut, TSignalRead, TSignalList and SignalTimer components.

4. Set signalTimer1.Frequency to 10.

5. Set signalOut1.Input = tSignalRead1.

6. Assign a valid stereo .wav file to tSignalRead1.FileName

7. Define event handlers for Click event of Start and Stop buttons:

private void buttonStart_Click(object sender, EventArgs e)
{
 tSignalRead1.Length = 2048;
 signalOut1.Start();
 signalTimer1.Enabled = true;
}

private void buttonStop_Click(object sender, EventArgs e)
{
 signalTimer1.Enabled = false;
 signalOut1.StopAtOnce();
}

8. Define OnTimer event handler of signalTimer1 (Add reference to Dew.Math.TeePro.dll assembly

to use DrawValues methods):

private void signalTimer1_OnTimer(object sender, EventArgs e)
{
 tSignalList1.Count = tSignalRead1.ChannelCount;
 tSignalList1[0].Length = 1024;
 tSignalList1[1].Length = 1024;
 signalOut1.MonitorData(tSignalList1[0], tSignalList1[1]);
 TeeChart.DrawValues(new TVec[] { tSignalList1[0].Data }, fastLine1, 0, signalOut1.Dt);
 TeeChart.DrawValues(new TVec[] { tSignalList1[1].Data }, fastLine2, 0, signalOut1.Dt);
}

9. Press F5 to run the application. Press Start.

Discussion:

Before calling signalOut1.Start, we set tSignalRead1.Length to some rather large value. This number also

defines the size of the playback buffer inside SignalOut. If the buffer is too small, we get clicks or

completely distorted sound.

We set SignalList.Count to the number of channels in the file and the length of individual items to the

number of samples that we would like to see on the chart. This time the data makes it to the chart via

DrawValues method and not by make use of the signalChart1.Signals property.

One other parameter that is not automatically transferred is the bit depth of the file being played back.

If the file would have had 24bit resolution, the signal would sound distorted. That’s why:

signalOut1.Quantization = (ushort)(MtxVec.SizeOfPrecision(tSignalRead1.Precision, false) * 8);

Users Guide for Dew Signal for .NET

16

is necessary before the playback starts. But, if the hardware does not support 24bit resolution,

additional scaling must be performed to prevent clipping. This scaling can be achieved via

tSignalRead1.ScaleFactor property.

4.2 Variable playback speed, tone generator
1. We start with the project from the previous chapter and add TSignalGeneratorList,

TSignalRateConverterList and TSignalBufferList to the form. Delete tSignalRead1 component and

set the following properties of components in designer:

• tSignalRateConverterList1.Input = tSignalGeneratorList1

• tSignalBufferList1.Input = tSignalRateConverterList1

• tSignalMux1.InputList = tSignalBufferList1

• signalOut1.Input = tSignalMux1

2. Set Count property equal to 2 for the following controls: tSignalGeneratorList1,

tSignalRateConverterList1, tSignalBufferList1.

3. Define Load event for the Form like this:

 private void Form1_Load(object sender, EventArgs e)
{

 TSignalGenerator sg = tSignalGeneratorList1[0];
 sg.Sounds.AddTemplate("template");
 sg.Sounds.Template.Add(new TFuncSignalRecord());
 sg.Sounds.Template[0].P1 = 3000; // Frequency
 sg.Sounds.Template[0].P3 = 30000; // Amplitude
 sg.Sounds.Template[0].OpType = TOpType.optFunction;
 sg.Sounds.Template[0].Func = TFuncSignalType.funSine;
 sg.Sounds.Template[0].Checked = true;
 sg.Sounds.Template[0].Continuous = true;
 sg.Sounds.TemplateIndex = 0;

 sg = tSignalGeneratorList1[1];
 sg.Sounds.AddTemplate("template");
 sg.Sounds.Template.Add(new TFuncSignalRecord());
 sg.Sounds.Template[0].P1 = 2000; // Frequency
 sg.Sounds.Template[0].P3 = 20000; // Amplitude
 sg.Sounds.Template[0].OpType = TOpType.optFunction;
 sg.Sounds.Template[0].Func = TFuncSignalType.funSine;
 sg.Sounds.Template[0].Checked = true;
 sg.Sounds.Template[0].Continuous = true;
 sg.Sounds.TemplateIndex = 0;

 tSignalBufferList1[0].Length = tSignalBufferList1[1].Length = 2048;
 }

Here we define two templates, one for each channel to be played. First channel will produce

sine at frequency of 3KHz with amplitude 30000, second – 2KHz, 20000.

tSignalBufferList1.Length is set large enough to fill buffer of SignalOut without skipping.

4. Add another button to the form. It will change Factor for tSampleRate1 and thus change

playback speed. Define its Click handler like this (you can try another Factor value):

 private void button1_Click(object sender, EventArgs e)
{

 tSignalRateConverterList1[0].Factor = 0.5;
 tSignalRateConverterList1[1].Factor = 0.5;
 }

Users Guide for Dew Signal for .NET

17

In this example signal generator will generate two tones, one on each channel,

TSignalRateConverter will change the sampling frequency of the signal and thus the playback

speed. TSignalBuffer will make sure that the buffer length after the rate converter has a fixed

size that can be used by SignalOut. The rate converter namely outputs Input.Length*Factor

number of samples. This means possibly non-integer sample count on every iteration and

consequently varying output Data.Length sample count. TSignalMux will multiplex both channels

together and thus prepare the signal for SignalOut.

SignalTimer will still perform the same function as before. Namely to update the charts with just

to be played back data.

Users Guide for Dew Signal for .NET

18

5 Batch file processing
Sometimes you want to apply a specific signal processing operation to a signal in a file and store the

result back in to the file. Rate conversion, digital filtering, envelope detection, noise reduction and

similar operations come to mind. This chapter shows how you can make such algorithms Channel Count

independent, how to automatically preserve the file format and a method to monitor the progress of

the processing. All you are left to specify is the actual computing logic itself.

//Unfinished. Work to do…

Users Guide for Dew Signal for .NET

19

6 Inner workings
The signal processing components in Dew Signal goals:

1. Offer pipelined architecture and visual programming of DSP algorithms.

2. Simplify the configuration of the pipeline via component editors.

3. Offer a quick access to most of the features of the Dew Signal to give the user a good overview.

4. Simplify the multi-channel processing.

The components can be used in two ways:

• As signal processing blocks connected in to pipes.

• As servers returning data processed according to their property settings.

The components offer a very unique capability to switch between different modes of programming:

visual and non-visual. In most classic visual programming environments like LabView or Simulink, the

programmer has to write its own component in order to be able to use it chained in the pipeline. Dew

Signal allows the user to program different parts of the algorithm in whatever is the most natural and

easy way to do it. While working with the components, I must admit that after connecting the

components up, it was very appealing to just continue programming in the same manner. There are

cases however when there was no way around and some things had to be programmed in a traditional

way.

Dew Signal does not offer components for many basics operations like: Multiply, divide etc.... Most

components are designed to get the user over the "hard" stuff, and not to completely replace the code

editor. (Some things can be become really tedious when streaming is a must).

The main strength of DSP Master is its underlying routine based library. It is recommended that user

should first try and write lines of code using the routine based library and then try to make the best out

of components. Most components simply encapsulate the underlying library. Some components are

more and others for a less general purpose. One should not try to make a "one fits all" attempt. If the

component does fit the need, write your own and use the existing ones as an example. In many cases it

is possible to get away by writing just a few lines of code.

Users Guide for Dew Signal for .NET

20

7 Classes
There are two major subclass systems which derive from TMtxComponent:

• TSignal

• TSpectrum

Components derived from TSignal have an Input and/or Inputs property and can be connected in to

signal processing chains:

The result of processing of each TSignal component is placed in the Data property. Data property is of

TVec type. The Input property points to the first element of the Inputs property. The component can

accept many Inputs, but not all components are able to make use of them. An example of a TSignal

component accepting many Inputs is TSignalMux, which multiplexes inputs in to one signal.

• To request recalculation of all connected components call the Pull method.

• To request recalculation of only the selected component use the Update method.

• To request recalculation of only a part of the component chain, streaming properties should be

set appropriately. (more in "Streaming properties").

7.1 Signal processing properties
Each TSignal component holds the description of the data which it holds. The key signal processing

properties are:

• Length – defines the length of Data vector.

• Complex – if true, the data vector is complex.

• ChannelCount – the number of mulitplexed channels stored in the Data vector.

• SamplingFrequency – sampling frequency of the signal.

The values of these properties are propagated from the first component in the signal processing chain to

the last. Each component in the chain can of course also change the values of these properties, if so

required. As it already became obvious, the signal processing chains are block based. This means that

each component will take data from the Data property of the component connected to its input, process

it and place the result in its own Data property. The size of the data block is defined with the first

component in the chain. Good sizes are from about 50 to about 2000 values. The size of the data block

should not exceed the size of CPU cache, or the performance will suffer. Signal processing chains based

on block processing are significantly faster than single sample based chains, because they can take

advantage of the SSE (P3) and SSE2 (Pentium 4) instructions sets. Single sample processing chains on the

other hand are simpler to use. There are several cases when the block size has to be changed on the fly.

Cases like this include:

TSignalFilter

TSignalFilter

TSignalMux TSignalWrite

Users Guide for Dew Signal for .NET

21

• Multi-rate, multi-stage decimation, Interpolation, demodulation and modulation. When the

change of the sampling frequency is large (in case of decimation or demodulation can the

sampling frequency change by 1000x), the input buffer has to be large enough, so that the

output will result in integer number of samples. The input buffer therefore has to be increased

and the output buffer also in order to match the recommended buffer size for further

processing.

• Changes in sampling frequency by an arbitrary real factor. (for example from 96kHz to 44.1kHz)

In such cases the buffer size again has to be increased, but this time the increase is not fixed.

The required input buffer size changes with each iteration, because the input sampling rate is

not divisible with output sampling rate.

There is a special component called TSignalBuffer which is designed to help manage the buffering

problems. Its Length property defines the desired output block size and until that much data is ready no

recalculation requests will be passed to its connected components. If more data is ready, no more data

will be fetched until the current buffer has been emptied. If it is not necessary to change the sampling

frequency within the processing pipe, the TSignalBuffer component is usually not needed.

7.2 Properties for pipeline control
Another important set of properties are those which control the pipelined streaming of the data. When

will a component be updated, when will new data be fetched etc... These properties are:

• Active

• Continuous

• Dirty

• UsesInputs

• SuspendNotifyUpdate

When a recalculation request is received, the request will not be executed unless Active and Dirty are

true. The Active property is to be disabled when it is necessary to disable both:

• fetching of new data

• recalculation of data.

This will be disabled only for the component for which the Active property is false. The Pull method will

return true and all subsequent recalculations will perform as usually. The components connected to the

Input property will not receive a Pull request. The Dirty property is similar to Active, except that its

purpose is to prevent recalculation with the same data. For example two TSignalDemux components are

connected to the TSignalRead to demultiplex two channels from the TSignalRead.Data property. When

the first TSignalDemux passes a recalculate request to TSignalRead, the TSignalRead will read the data

from the file. There should be no second call to load the data again for the second channel. That's why

the call to recalculate (Update) sets Dirty to false. The Dirty property is set to true by the Pull method.

Continuous should be set to false when only fetching of new data should be omitted, but the

component should recalculate (and place the result in its Data property). If the component requires

components connected to its Inputs slot, then the UsesInputs should be set to true. The UsesInputs

property is protected.

SuspendNotifyUpdate is similar to the Dirty property. It is to prevent a call to the OnNotifyUpdate event.

That event is used to update the charts or the form. One such example is averaging. The display should

Users Guide for Dew Signal for .NET

22

only be updated after the averaging has been completed and not for every iteration. Not setting

SuspendNotifyUpdate to false, will unnecessarily drain the CPU. Some components like

TCrossSpectrumAnalyzer and TBispectrumAnalyzer automatically set and reset the

SuspendNotifyUpdate property when averaging.

7.3 Writing custom TSignal components
In order to be able to include a component in to the pipeline, the component has to be derived from

TSignal. If its result depends on the Inputs, the UsesInputs property should be set to true in the

constructor. The continuous property should also be set appropriately. Apart from that, only the

InternalUpdate method should be overridden. The routine should return proper TPipeState value to

indicate that Data can be further processed (pipeOK) or to stop the processing (pipeEnd). The values of

all other signal processing and streaming properties are being assigned automatically. The underlying

routines also perform the check, if the Inputs are connected.

Example:

public class SignalScale : TSignal
{
 public SignalScale() : base()
 {
 UsesInputs = true;
 }

 protected override TPipeState InternalUpdate()
 {
 Data.Copy(Input.Data);
 Data.Scale(2);
 return TPipeState.pipeOK;
 }

 [Browsable(true)]
 public new TSignal Input
 {
 get
 {
 return base.Input;
 }
 set
 {
 base.Input = value;
 }
 }
}

Users Guide for Dew Signal for .NET

23

8 Dialogs
The package includes several component editors (dialogs). This dialogs can be used to give the

application a quick user interface to the most of the properties of key components. They also give the

user a quick access to the majority of all signal processing algorithms in the package. Each dialog is

controlled by four key properties:

• Continuous

• Live

• Docking

• StayOnTop

Continuous controls the TSignal.Continuous properties. This property can be very useful when a

recalculation with a set of different values for one or more of the parameters is to be tried out on the

same data. When Live is checked, the component will be recalculated immediately when a parameter

(edit box) changes. StayOnTop is self explanatory. A very neat feature is the adjustable increment of

up/down boxes. Double click any up/down edit box to change the number formatting or its increment. If

StoreInRegistry property of the associated Dialog component is true, the number formatting and the

increment of all up/down edit boxes on the current dialog will be saved in to the system registry.

All dialogs also provide commands to save and load the settings of the edited component to and from a

file.

	1 Displaying the signal
	1.1 Simple start
	1.2 Browsing the signal
	1.3 Reading multi-channel files
	1.4 Showing two channels
	1.5 Showing two channels second example
	1.6 Summary

	2 Frequency analyzer
	2.1 Dual channel frequency analyzer
	2.2 Adding peak marking
	2.3 Adding user dialogs and editors

	3 Recording
	3.1 Simple monitoring of the recording signal
	3.2 Monitoring and recording to file

	4 Playback
	4.1 Playback monitoring
	4.2 Variable playback speed, tone generator

	5 Batch file processing
	6 Inner workings
	7 Classes
	7.1 Signal processing properties
	7.2 Properties for pipeline control
	7.3 Writing custom TSignal components

	8 Dialogs

