In the following example we use the TMtxNonLinReg component to fit generated data to non-linear function B[0]/Power((1.0 + Exp(B[1]-B[2]*X)),1/B[3]). In this example exact derivate procedure is not used - algorithm uses numerical derivatives:
// regress function function Rat43(const B: TVec; X: double): double; begin Rat43 := B[0] / Power((1.0 + Exp(B[1]-B[2]*X)),1/B[3]); end; procedure TfrmNonLinTest.FormCreate(Sender: TObject); var MtxNonLinReg: TMtxNonLinReg; begin MtxNonLinReg := TMtxNonLinReg.Create; try // Load data - independent variable MtxNonLinReg.X.SetIt(false,[9.000, 14.000, 21.000, 28.000, 42.000, 57.000, 63.000, 70.000, 79.000]); // Load data - dependent variable MtxNonLinReg.Y.SetIt(false,[8.930, 10.800, 18.590, 22.330, 39.350, 56.110, 61.730, 64.620, 67.080]); // Initial estimates for regression coefficients MtxNonLinReg.b.SetIt(false,[100,10,1,1]); // setup optimization parameters MtxNonLinReg.Tolerance := 1.0e-6; // 6 digits should do the trick MtxNonLinReg.GradTolerance := 1.0e-3 // 3 digits MtxNonLinReg.MaxIteration := 400; MtxNonLinReg.RegressFunction := Rat43; // regression function // Marquardt method MtxNonLinReg.OptMethod := optMarquardt; MtxNonLinReg.Recalc; // MtxNinLinReg.b now stores calculated regression parameter estimates finally MtxNonLinReg.Free; end; end;
#include "MtxExpr.hpp" #include "StatTools.hpp" #include "Math387.hpp" double __fastcall Rat43(TVec* const b,double x) { double* B = b->PValues1D(0); return B[0] / Math387::Power((1.0 + Exp(B[1]-B[2]*x)),1.0/B[3]); } void __fastcall Example() { TMtxNonLinReg *nlr = new TMtxNonLinReg(NULL); try { const int xLen = 9; double xData[xLen] = {9.000, 14.000, 21.000, 28.000, 42.000, 57.000, 63.000, 70.000, 79.000}; const int yLen = 9; double yData[yLen] = {8.930, 10.800, 18.590, 22.330, 39.350, 56.110, 61.730, 64.620, 67.080}; // Load data - independent variable nlr->X->SetIt(false, xData, xLen - 1); // Load data - dependent variable nlr->Y->SetIt(false, yData, yLen - 1); // Initial estimates for regression coefficients nlr->B->SetIt(false,OPENARRAY(double,(100,10,1,1))); // setup optimization parameters nlr->Tolerance = 1.0e-6; // 6 digits should do the trick nlr->GradTolerance = 1.0e-3; // 3 digits nlr->MaxIteration = 400; nlr->RegressFunction = Rat43; // regression function // Marquardt method nlr->OptMethod = optMarquardt; nlr->Recalc(); // MtxNinLinReg->b now stores calculated regression parameter estimates } __finally { nlr->Free(); } }
Copyright (c) 1999-2025 by Dew Research. All rights reserved.
|